

I legumi: semi nutrienti per un futuro sostenibile

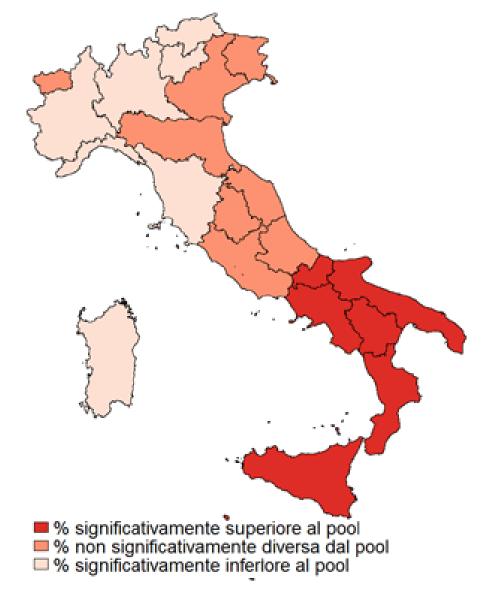
legumi e controllo del pero corporeo

Jacopo Vitti

In the WHO/European Region

over 50% of people are overweight or obese

over 20% of people are obese



Rapporto nazionale Passi 2010 - 2013

Progressi delle Aziende Sanitarie per la Salute in Italia

Sovrappeso	31 %
Obesi	11%

Aumento dell'introito calorico

Diminuzione della spesa energetica

Facilità di accesso al cibo

Cibo ad alta densità calorica

Cibo a basso costo

Lavoro (sedentario)

Scuola (sempre meno ore dedicate all'attività fisica)

Tempo libero (TV, Internet, videogiochi)

Accesso ai mezzi di trasporto

Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials¹⁻³

Shana J Kim, ^{4,7} Russell J de Souza, ^{4,7,10}* Vivian L Choo, ^{4,7} Vanessa Ha, ^{4,7,10} Adrian I Cozma, ^{4,5,7} Laura Chiavaroli, ^{4,7} Arash Mirrahimi, ^{4,7,11} Sonia Blanco Mejia, ^{4,7} Marco Di Buono, ^{4,12} Adam M Bernstein, ^{13,14} Lawrence A Leiter, ^{4,5,7–9} Penny M Kris-Etherton, ¹⁵ Vladimir Vuksan, ^{4,5,7–9} Joseph Beyene, ^{6,10} Cyril WC Kendall, ^{4,7,16} David JA Jenkins, ^{4,5,7–9} and John L Sievenpiper, ^{4,7–9}

Copyright (C) 2016 by the American Society for Nutrition

Prese in esame 3000 pubblicazioni!!

Inclusi: studi controllati randomizzati che investigavano l'effetto della dieta con consumo di legumi sul peso corporeo e circonferenza vita

Esclusi: studi non randomizzati, che seguivano una dieta per meno di 3 settimane, che non hanno usato il gruppo di controllo isocalorico

Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials^{1–3}

- 21 studi con 940 partecipanti
- Età media 51,3 aa
- BMI medio 30,2 kg/m2
- Durata follow-up medio 6 settimane

Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials^{1–3}

- <u>Dieta di intervento</u>: 38% usava un mix di legumi, 38% fagioli; 19% ceci, 10 % piselli, 5 % lenticchie
- Dose media di legumi era 132 g al giorno a peso cotto (278 80 g/die)
- Dieta di controllo: senza legumi a parità calorie
- Modalità diverse: consigli dietetici, consegna degli alimenti e consumo a domicilio, alimentazione sotto controllo
- 17/21 studi dieta normocalorica
- 4/21 studi dieta ipocalorica riduzione del 30-35% delle calorie totali giornaliere

RISULTATI

				- /	
Subgroup and study, year	Pulses (n)	Comparator (n)	Weight (%)1	Mean difference, 95% CI in weight (kg)	Mean difference, 95% CI in weight (kg)
Negative energy balance					1
Abete, 2009 (24)	8	10	2.2	-3.01 (-5.00, -1.02)	
Belski, 2011 (28)	46	47	4.2	-0.60 (-2.00, 0.80)	-+
Crujeiras, 2007 (29)	15	15	1.0	-2.60 (-5.51, 0.31)	
Hermsdorff, 2011 (31)	15	15	0.2	-0.70 (-7.54, 6.14)	
Subtotal				-1.74 (-3.19, -0.30)	•
Heterogeneity: Tau ² = 0.69; C	$Chi^2 = 4.3$	9; P = 0.22; I ² =	32%		
Test for overall effect: $Z = 2.3$	36; P = 0.	02			
Neutral energy balance					
Abeysekara, 2012 (25)	83	83	15.4	0.00 (-0.65, 0.65)	+
Anderson, 1984 (26)	10	10	8.1	0.05 (-0.92, 1.02)	T .
Anderson, 1990 A (27)	6	6	0.1	1.90 (-9.38, 13.18)	
Anderson, 1990 B (27)	9	9	0.1	-8.64 (-20.44, 3.15) ←	
Anderson, 1990 C (27)	9	9	0.1	3.90 (-6.77, 14.57)	
Gravel, 2010 (30)	54	60	0.7	-0.80 (-4.30, 2.70)	
Hodgson, 2010 (32)	37	37	8.4	-0.40 (-1.35, 0.55)	-
Jenkins, 2012 (33)	60	61	25.8	-0.70 (-1.13, -0.27)	=
Jimenez-Cruz, 2004 (34)	8	8	0.1	-0.30 (-8.58, 7.98)	-
Mackay and Ball, 1992 (35)	39	39	0.5	0.30 (-4.09, 4.69)	
Marinangeli and Jones, 2011 (36)	23	23	10.1	0.14 (-0.71, 0.99)	+
Nestel, 2004 (37)	19	19	0.2	0.80 (-5.84, 7.44)	
Pittaway, 2006 (38)	47	47	0.4	0.10 (-4.55, 4.75)	
Pittaway, 2007 (39)	27	27	0.2	0.10 (-6.12, 6.32)	
Saraf-Bank, 2015 (40)	26	26	9.8	-0.61 (-1.48, 0.26)	
Tonstad, 2014 (41)	64	59	3.0	1.10 (-0.57, 2.77)	+
Veenstra, 2010 (42)	20	21	9.4	0.08 (-0.81, 0.96)	+
Subtotal				-0.29 (-0.56, -0.03)	♦
Heterogeneity: $Tau^2 = 0.00$; (= 0%		
Test for overall effect: $Z = 2.2$	20; P = 0.	03			
Total				-0.34 (-0.63, -0.04)	♦
Heterogeneity: Tau ² = 0.04; Chi ²	= 21.95;	$P = 0.34; I^2 = 9$	%		
Test for overall effect: $Z = 2.22$;				-10	-5 0 5 10

Test for subgroup differences: Chi² = 3.72; P: Am J Clin Nutr doi: 10.3945/ajcn.115.124677. Printed in USA. © 2016 American Society for Nutrition

RISULTATI

6 studi N	= 509
-----------	-------

6 studi N = 509				Mean difference,	Maan difference 05% CI in
Subgroup and study, year	Pulses (n)	Comparator (n)	Weight (%) ¹		Mean difference, 95% CI in waist circumference (cm)
Negative energy balance					
Abete, 2009 (24)	8	10	15.8	-0.90 (-3.06, 1.26)	
Hermsdorff, 2011 (31)	15	15	0.0	1.90 (-48.84, 52.64) ←	· · · ·
Subtotal				-0.89 (-3.06, 1.27)	
Heterogeneity: Tau ² =			$I^2 = 0\%$		
Test for overall effect:	z = 0.81; P	= 0.42			
Neutral energy balance					
Abeysekara, 2012 (25)	83	83	22.9	-0.30 (-1.85, 1.25)	
Gravel, 2010 (30)	54	60	11.4	-0.20 (-2.94, 2.54)	-
Jenkins, 2012 (33)	60	61	32.5	-1.40 (-2.35, -0.45)	
Veenstra, 2010 (42)	20	21	17.4	1.86 (-0.15, 3.86)	-
Subtotal				-0.18 (-1.60, 1.25)	
Heterogeneity: Tau ² =	: 1.31; Chi ² =	= 8.70; P = 0.03;	$I^2 = 66\%$		
Test for overall effect:	Z = 0.24; P	= 0.81			
Total				0.27 (1.44 0.71)	

Total

Heterogeneity: $Tau^2 = 0.70$; $Chi^2 = 8.76$; P = 0.12; $I^2 = 43\%$

Test for overall effect: Z = 0.66; P = 0.51

Test for subgroup differences: $Chi^2 = 0.30$; P = 0.59; $I^2 = 0\%$

-0.37 (-1.44, 0.71)

Favors pulses

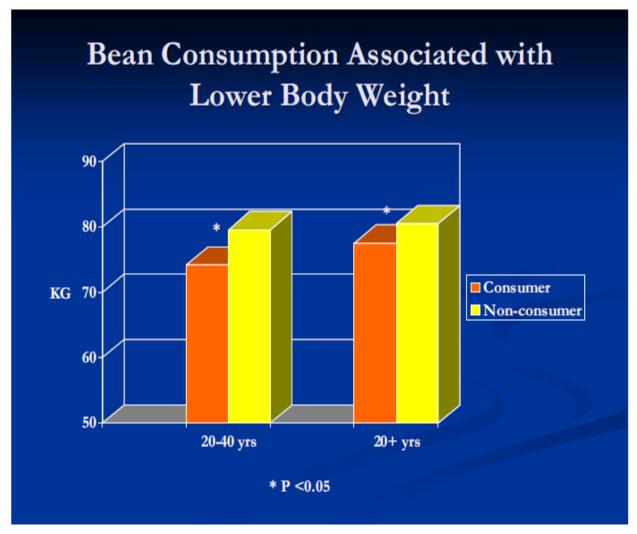
Favors comparator

Original Research

Bean Consumption Is Associated with Greater Nutrient Intake, Reduced Systolic Blood Pressure, Lower Body Weight, and a Smaller Waist Circumference in Adults: Results from the National Health and Nutrition Examination Survey 1999-2002

Yanni Papanikolaou, MHSc, and Victor L. Fulgoni, III, PhD

Nutritional Strategies, Toronto, Ontario, CANADA (Y.P.), Nutrition Impact, Battle Creek, Michigan (V.L.F.)

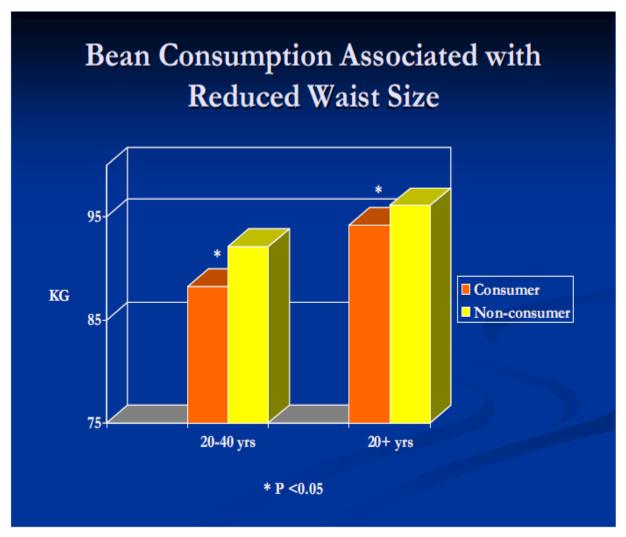

- NHANES è un indagine continua condotta dal National Center for Health Statistics con revisione dei dati ogni due anni
- NHANES 1999-2000 contiene 9.965 americani e NHANES 2001-2002 contiene 11.039 americani
- Per questa indagine erano combinati i 4 anni
- Era escluso dallo studio chi non registrava la dieta , le donne in gravidanza e in allattamento

JOURNAL OF THE AMERICAN COLLEGE OF NUTRITION

Table 1. Adjusted Nutrient Intake for Variety and/or Baked Bean Consumers for All Age Groups - NHANES 1999-2002*

		20–40 Years Old			40 Years and Older		
Observations = 2616			Ob	servations = 5758			
Nutrients	Users 277	Non-Users 2339	P-Value	Users 654	Non-Users 5104	P-Value	
M	Mean SE	Mean SE		Mean SE	Mean SE	_	
Energy, kcal**	2689 ± 76	2432 ± 22	0.0009	2185 ± 32	2025 ± 18	0.0009	
Protein, g	91.2 ± 3.0	88.0 ± 0.76	0.3373	78.6 ± 1.6	77.4 ± 0.48	0.4820	
Total fat, g	83.8 ± 2.9	89.2 ± 0.80	0.0962	75.3 ± 1.2	78.0 ± 0.55	0.0268	
Saturated fat, g	26.6 ± 1.0	29.9 ± 0.28	0.0064	23.7 ± 0.66	25.1 ± 0.23	0.0342	
Carbohydrate, g	320.5 ± 7.3	308.0 ± 2.4	0.1352	257.0 ± 4.0	248.7 ± 0.89	0.0374	
Dietary Fiber, g	22.8 ± 0.62	14.6 ± 0.25	< 0.0001	22.8 ± 0.73	15.5 ± 0.26	< 0.0001	

^{**} Adjusted for Gender, Ethnicity and Age



Consumer: 77.5 ± 1.1 kg

VS

Non-consumer: $80,5 \pm 0,3 \text{ kg}$

Fig. 1. Bean consumption associated with lower body weight.

Consumer: 94.4 ± 1.0 cm

VS

Non-consumer: $96,5 \pm 0,3$ cm

Fig. 2. Bean consumption associated with reduced waist size.

I consumatori di legumi rispetto ai non consumatori hanno un rischio ridotto del 23 % di aumentare la circonferenza vita e del 22% di diventare obesi

The Effect of Increasing Consumption of Pulses and Wholegrains in Obese People: A Randomized Controlled Trial

Bernard J. Venn, PhD, Tracy Perry, PhD, Tim J. Green, PhD, C. Murray Skeaff, PhD, Wendy Aitken, MSc, Nicky J. Moore, MSc, Jim I. Mann, MD, Alison J. Wallace, PhD, John Monro, PhD, Alison Bradshaw, MSc, Rachel C. Brown, PhD, Paula M.L. Skidmore, PhD, Kyle Doel, BSc, Kerry O'Brien, PhD, Chris Frampton, PhD, Sheila Williams, PhD

108 volontari seguiti per 18 mesi ai quali veniva fornita una dieta di controllo o una dieta ricca di legumi e cereali integrali

55 soggetti seguivano la dieta di controllo:

3 porzioni di verdura

2 porzioni di frutta

6 porzioni di pane o cereali

2 porzioni latticini

1-2 porzioni di alimenti ricchi in proteine come carne, pesce, uova e legumi

53 soggetti seguivano la dieta di intervento:

Simili consigli ma dovevano sostituire 2 porzioni di pane o cereali con 2 porzioni di legumi e altre 2 porzioni di pane e cerali con 2 porzioni di cereali integrali

Porzione: una fetta di pane 37 g, cereali 30 g o legumi 90 g

The Effect of Increasing Consumption of Pulses and Wholegrains in Obese People: A Randomized Controlled Trial

Bernard J. Venn, PhD, Tracy Perry, PhD, Tim J. Green, PhD, C. Murray Skeaff, PhD, Wendy Aitken, MSc, Nicky J. Moore, MSc, Jim I. Mann, MD, Alison J. Wallace, PhD, John Monro, PhD, Alison Bradshaw, MSc, Rachel C. Brown, PhD, Paula M.L. Skidmore, PhD, Kyle Doel, BSc, Kerry O'Brien, PhD, Chris Frampton, PhD, Sheila Williams, PhD

Durante i primi 6 mesi, i partecipanti seguivano lezioni di cucina, venivano guidati nella spesa al supermercato, ricevevano consigli dietetici e ricette fatte da nutrizionista.

Ogni 2 settimane i partecipanti venivano pesati

Variable	Time	Control Group	Intervention Group	p
Pulses (serves/d)	Baseline	0.1 (0.0, 0.5)	0.2 (0.0, 0.7)	0.15
	2 months	0.1 (0.0, 0.5)	1.7 (1.4, 2.2)	< 0.001
	6 months	0.0 (0.0, 0.3)	1.8 (1.2, 2.1)	< 0.001
	12 months	0.1 (0.0, 0.6)	0.9 (0.3, 2.0)	< 0.001
Wholegrains (serves/d)	Baseline	0.5 (0.2, 9)	0.8 (0.6, 1.2)	0.10
	2 months	0.8 (0.3, 1.1)	1.4 (0.8, 1.8)	0.001
	6 months	1.0 (0.3, 1.4)	1.3 (1.0, 1.9)	0.003
	12 months	1.1 (0.9, 1.8)	1.4 (0.9, 1.7)	0.71
Energy (kJ/d)	Baseline	8590 (7762, 10823)	8571 (7219, 10002)	0.15
	2 months	6331 (5274, 7243)	6600 (5846, 7871)	0.19
	6 months	6120 (5135, 6873)	5917 (5258, 7186)	0.60
	12 months	6508 (5845, 7311)	6350 (5559, 7297)	0.79
Carbohydrate (% energy)	Baseline	49 (44,55)	49 (45,57)	0.35
	2 months	55 (50, 60)	56 (53, 58)	0.14
	6 months	54 (49, 59)	52 (50, 57)	0.60
	12 months	52 (46, 56)	51 (48, 57)	0.76
Total fat (% energy)	Baseline	32 (26, 37)	31 (27, 36)	0.30
237	2 months	24 (19, 26)	23 (20, 26)	0.62
	6 months	25 (19, 29)	25 (21, 29)	0.86
	12 months	26 (22, 29)	27 (21, 31)	0.92
Saturated fat (% energy)	Baseline	13 (9, 16)	12 (10, 14)	0.42
	2 months	8 (6, 9)	8 (6, 9)	0.59
	6 months	9 (6, 10)	8 (6, 10)	0.92
	12 months	9 (7, 10)	10 (8, 11)	0.93
Protein (% energy)	Baseline	17 (15, 19)	17 (14, 20)	0.11
	2 months	20 (19, 22)	20 (18, 22)	0.51
	6 months	20 (18, 23)	21 (19, 23)	0.16
	12 months	20 (18, 23)	20 (17, 22)	0.32
Dietary fiber (g/d)	Baseline	25 (21, 29)	25 (18, 32)	0.77
	2 months	21 (18, 25)	31 (25, 36)	< 0.001
	6 months	21 (17, 26)	28 (24, 33)	< 0.001
	12 months	23 (18, 28)	25 (21, 34)	0.20
Glycemic index (%)	Baseline	54 (51, 58)	55 (51, 58)	0.61
	2 months	53 (50, 57)	48 (45, 51)	< 0.001
	6 months	51 (46, 55)	45 (43, 48)	< 0.001
	12 months	51 (49, 54)	47 (43, 50)	0.011
Glycemic load (g)	Baseline	136 (113, 160)	134 (109, 165)	0.89
	2 months	104 (90, 127)	97 (88, 128)	0.69
	6 months	98 (78, 110)	93 (72, 102)	0.23
	12 months	108 (85, 119)	92 (82, 101)	0.27

Completed diet records:

Control group: n = 55 (baseline), n = 52 (2 mo), n = 38 (6 mo), n = 24 (12 mo). Intervention group: n = 53 (baseline), n = 51 (2 mo), n = 37 (6 mo), n = 33 (12 mo),

Indice Glicemico o Glycemic Index (GI)

Indica la velocità con cui aumenta la glicemia in seguito all'assunzione di un determinato alimento a parità di carboidrati

Carico Glicemico o Glycemic Load (GL)

GL = Indice glicemico (GI) x contenuto di carboidrati

Wholegrain and Pulses in Weight Loss

					Between Group Differences, Mean (95% CI		
Variable	Group	Baseline	6 Months	18 Months	At 6 Months	At 18 Months	
Weight (kg)	Control	95 (17.7)	89 (18.3)	92 (21.8)			
	Intervention	100 (20.7)	93 (21.0)	94 (22.8)	-0.2(-2.1, 1.7)	-2.2 (-4.8, 0.4)	
Body mass index (kg/m ²)	Control	34.8 (4.7)	32.1 (4.8)	33.5 (6.2)		, , ,	
	Intervention	36.1 (6.4)	33.5 (6.7)	34.1 (7.5)	0.1 (-0.6, 0.8)	-0.8 (-1.7, 0.2)	
Waist (cm)	Control	102 (12)	96 (13)	100 (14)			
	Intervention	106 (14)	99 (14)	102 (16)	-0.5(-2.2, 1.2)	-2.8 (-5.1, -0.4)*	

Dietary Pulses, Satiety and Food Intake: A Systematic Review and Meta-analysis of Acute Feeding Trials

Siying S. Li^{1,2}, Cyril W.C. Kendall^{1,2,3}, Russell J. de Souza^{2,4}, Viranda H. Jayalath^{1,2}, Adrian I. Cozma^{1,2}, Vanessa Ha^{1,2}, Arash Mirrahimi^{1,2,5}, Laura Chiavaroli^{1,2}, Livia S.A. Augustin², Sonia Blanco Mejia^{1,2}, Lawrence A. Leiter^{1,2,6,7,8}, Joseph Beyene^{4,9,10}, David J.A. Jenkins^{1,2,6,7,8} and John L. Sievenpiper^{2,7,11}

Study-year (reference)	Subjects	Comparator ^c	Pulse type
Hall et al., 2005 (19)	11 N (9M:2F)	White bread	Lupin
Holt et al., 1995 (20)	11 N (6M:5F)	White bread	Lentil, Bean
Johnson et al.,	11 N (9M:2F)		
2005 (21)		White bread	Chickpea
Keogh et al., 2011 (22)	20 N (10M:10F)	White bread	Lupin
Leathwood et al., 1988 (23)	6 N (3M:3F)	Potato puree	Bean
Lee et al.,	16 N (8M:8F)	White bread	Lupin
2006 (24)	, ,	Mac and cheese	Chickpea, Lentil,
Mollard et al.,	25 N (25M)		Yellow Pea
2011 (25)		Placebo	Pinto Bean, Navy Bean,
Winham et al.,	11 N (4M:7F)		Black-eyed Pea
2007 (26)		White broad	•
Wong et al.,	15 N (15M)	White bread	Chickpea, Lentil,
2009 (27)			Navy Bean,
			Yellow Pea

Dietary Pulse and Food Intake Regulation Li et al.

		Ratio of Means	Ratio of Means
Study or Subgroup	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Hall et al. 2005 (19)	5.9%	1.34 [0.63, 2.86]	
Holt et al. 1995 (20)	8.3%	1.49 [0.79, 2.84]	
Johnson et al. 2005 (21)	7.6%	1.05 [0.54, 2.05]	
Keogh et al. 2011 (22)	17.7%	1.43 [0.93, 2.22]	
Leathwood et al 1988 (23)	8.3%	0.97 [0.51, 1.84]	
Lee et al. 2006 (24)	27.0%	1.36 [0.96, 1.95]	
Mollard et al. 2011 (25)	7.4%	1.34 [0.68, 2.63]	
Winham et al. 2007 (26)	14.0%	1.18 [0.72, 1.94]	
Wong et al. 2009 (27)	3.7%	1.99 [0.77, 5.19]	-
Total (95% CI)	100.0%	1.31 [1.09, 1.58]	

FIGURE 2 Forest plot of satiety index. The pooled effect estimate (diamond) is shown. Paired analyses were applied to all crossover trials (35). Data are expressed as RoMs with 95% Cls, using generic inverse-variance random-effects models. Inter-study heterogeneity was tested using the Cochran Q statistic (chi-square) at a significance level of P < 0.10. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

I soggetti che seguivano la dieta con consumo di legumi avevano un senso di sazietà maggiore del 31 % rispetto al controllo

Pulse Consumption, Satiety, and Weight Management¹

Megan A. McCrory,²⁻⁴* Bruce R. Hamaker,⁴⁻⁶ Jennifer C. Lovejoy,⁷ and Petra E. Eichelsdoerfer⁸

Caratteristiche dei legumi che possono aiutare il controllo del peso corporeo

- Fibra (15-32% peso crudo)
- Basso indice glicemico
- Amido resistente
- Acido fitico

²Department of Foods and Nutrition, ³Department of Psychological Sciences, ⁴Ingestive Behavior Research Center, ⁵Whistler Center for Carbohydrate Research, and ⁶Department of Food Science, Purdue University, West Lafayette, IN 47907-2059; ⁷Free & Clear, Seattle, WA 91804-1139; and ⁸Bastyr University Research Institute, Bastyr University, Kenmore, WA 90828-4960

Dietary Fiber and Weight Regulation

Nancy C. Howarth, M.Sc., Edward Saltzman, M.D., Susan B. Roberts, Ph.D.

- ✓ la fibra solubile forma un gel viscoso che rallenta lo svuotamento gastrico e ne aumenta il volume inducendo sazietà
- è digerita dai batteri intestinali nel colon che liberano SCFA (acidi grassi a corta catena) in particolare il propionato può stimolare il senso di sazietà

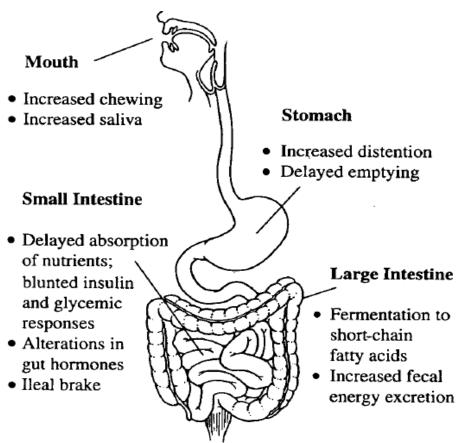


Figure 1. The effects of fiber in the gastrointestinal tract on parameters related to energy regulation.

Dietary Fiber and Weight Regulation

Nancy C. Howarth, M.Sc., Edward Saltzman, M.D., Susan B. Roberts, Ph.D.

- "Ileal brake" rallentamento del transito nel piccolo intestino e produzioni di ormoni anoressizzanti (GLP-1)
- ✓ Riduce l'assorbimento di grassi e proteine limitando il contatto fisico tra i nutrienti e i villi intestinali
- ✓ l'uomo nel paleoloitico introduceva dai 77 a 120 g al giorno di fibra ad oggi l'obeso è stimato che ne consumi solo 15 g al giorno

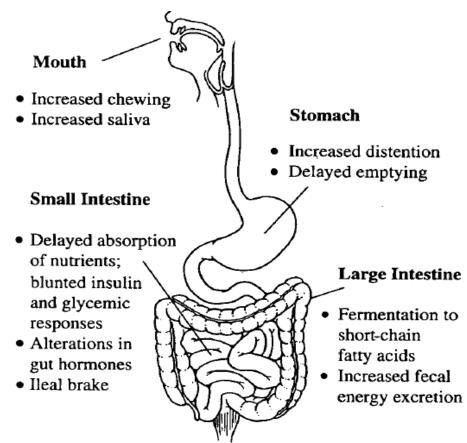


Figure 1. The effects of fiber in the gastrointestinal tract on parameters related to energy regulation.

Pulse Consumption, Satiety, and Weight Management¹

Megan A. McCrory, 2-4* Bruce R. Hamaker, 4-6 Jennifer C. Lovejoy, and Petra E. Eichelsdoerfer 8

Caratteristiche dei legumi che possono aiutare il controllo del peso corporeo

- Fibra (15-32% peso crudo)
- Basso indice glicemico
- Amido resistente
- Acido fitico

²Department of Foods and Nutrition, ³Department of Psychological Sciences, ⁴Ingestive Behavior Research Center, ⁵Whistler Center for Carbohydrate Research, and ⁶Department of Food Science, Purdue University, West Lafayette, IN 47907-2059; ⁷Free & Clear, Seattle, WA 91804-1139; and ⁸Bastyr University Research Institute, Bastyr University, Kenmore, WA 90828-4960

Dietary Glycemic Index and Obesity^{1,2}

David S. Ludwig

Division of Endocrinology, Children's Hospital, Boston, MA 02115

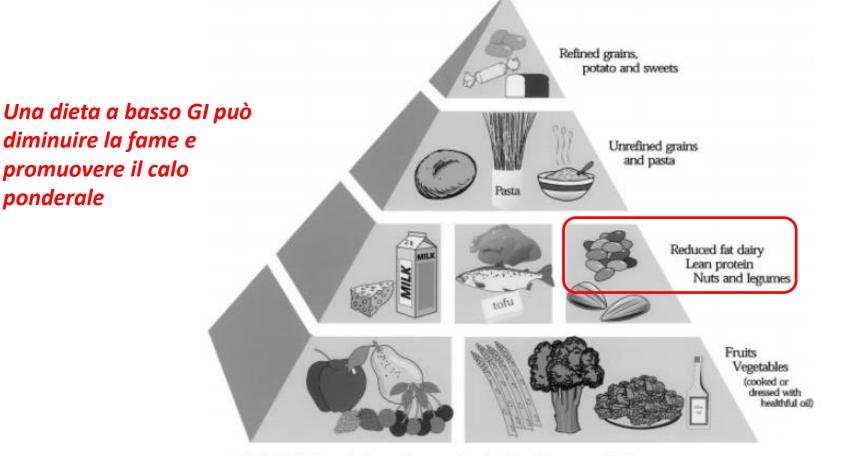


FIGURE 1 A low glycemic index "pyramid."

Pulse Consumption, Satiety, and Weight Management¹

Megan A. McCrory, 2-4* Bruce R. Hamaker, 4-6 Jennifer C. Lovejoy, and Petra E. Eichelsdoerfer 8

Caratteristiche dei legumi che possono aiutare il controllo del peso corporeo

- Fibra (15-32% peso crudo)
- Basso indice glicemico
- Amido resistente
- Acido fitico

²Department of Foods and Nutrition, ³Department of Psychological Sciences, ⁴Ingestive Behavior Research Center, ⁵Whistler Center for Carbohydrate Research, and ⁶Department of Food Science, Purdue University, West Lafayette, IN 47907-2059; ⁷Free & Clear, Seattle, WA 91804-1139; and ⁸Bastyr University Research Institute, Bastyr University, Kenmore, WA 90828-4960

Resistant starch in the Italian diet*

Furio Brighenti[†], M. Cristina Casiraghi and Cristina Baggio

Department of Food Science & Microbiology, Nutrition Unit, University of Milan, Via Celoria no. 2, 20133 Milano, Italy

(Received 16 October 1997 - Revised 9 April 1998 - Accepted 12 May 1998)

Table 2. Resistant starch (RS) in the main food groups in the Italian diet*

(Mean values with their standard errors for the no. of determinations indicated)

	RS (g/kg dry wt)			
	Mean	SE	n	
Cereals Potatoes Legumes	32·2 ^a 56·7 ^b 116·8 ^c	1·6 2·5 3·9	100 22 41	

^{a,b,c} Mean values in the same column not sharing a common superscript letter were significantly different (*P*< 0.05).

L' amido resistente o Resistant starch (RS)

è definito come la frazione di amido che essendo altamente resistente alle amilasi pancreatiche arriva nel colon non digerito e fermenta comportandosi come la fibra solubile

^{*}For details of procedures, see p. 334.

Amido dei legumi difficile da digerire per:

✓ un alto rapporto amilosio/amilopectina paragonato a patate e cereali (30-40% legumi vs 5-10% cereali).

Amido dei legumi difficile da digerire per:

Amido in forma "cristallina" difficile da digerire, insolubile a temperatura ambiente

Dopo cottura (riscaldamento in ambiente acquoso), amido idratato, "gelatinizzazione" forma digeribile

Maggiore quantità di amilosio e maggiore capacità di "ricristallizzazione o retrogradazione" con il raffreddamento, rendendolo meno accessibile agli enzimi digestivi (amido resistente)

Pulse Consumption, Satiety, and Weight Management¹

Megan A. McCrory,²⁻⁴* Bruce R. Hamaker,⁴⁻⁶ Jennifer C. Lovejoy,⁷ and Petra E. Eichelsdoerfer⁸

²Department of Foods and Nutrition, ³Department of Psychological Sciences, ⁴Ingestive Behavior Research Center, ⁵Whistler Center for Carbohydrate Research, and ⁶Department of Food Science, Purdue University, West Lafayette, IN 47907-2059; ⁷Free & Clear, Seattle, WA 91804-1139; and ⁸Bastyr University Research Institute, Bastyr University, Kenmore, WA 90828-4960

Caratteristiche dei legumi che possono aiutare il controllo del peso corporeo

- Fibra (15-32% peso crudo)
- Basso indice glicemico
- Amido resistente
- Acido fitico

acido fitico

(o acido inositol-esafosforico)

 è la principale forma di deposito di fosforo nei vegetali

 I legumi sono una delle principali fonti di fitati nella dieta

• i fitati possono ridurre la digestione dell'amido e l'assorbimento di glucosio contribuendo a fornire senso di sazietà e ritardare il ritorno della fame

Conclusioni

✓ I legumi, con il loro contenuto in fibra, proteine e amido resistente, sono un alimento a basso indice glicemico che fornisce un elevato senso di sazietà

✓ Il consumo quotidiano può essere d'ausilio nel controllo del peso corporeo a lungo termine

Grazie per l'attenzione

www.jacopovitti.it